Implicit Asymptotic Preserving Schemes for Semiconductor Boltzmann Equation in the Diffusive Regime

نویسنده

  • JIA DENG
چکیده

We design several implicit asymptotic-preserving schemes for the linear semiconductor Boltzmann equation with a diffusive scaling, which lead asymptotically to the implicit discretizations of the drift-diffusion equation. The constructions are based on a stiff relaxation step and a stiff convection step obtained by splitting the system equal to the model equation. The one space dimensional schemes are given with the uniform grids and the staggered grids, respectively. The uniform grids are considered only in two space dimension. The relaxation step is evolved with the BGK-penalty method of Filbet and Jin [F. Filbet and S. Jin, J. Comp. Phys. 229(20), 7625-7648, 2010], which avoids inverting the complicated nonlocal anisotropic collision operator. The convection step is performed with a suitable implicit approximation to the convection term, which gives a banded matrix easy to invert. The von-Neumman analysis for the Goldstein-Taylor model show that the one space dimensional schemes are unconditionally stable. The heuristic discussions suggest that all the proposed schemes have the correct discrete drift-diffusion limit. The numerical results verify that all the schemes are asymptotic-preserving. As far as we know, they are the first class of asymptotic-preserving schemes ever introduced for the Boltzmann equation with a diffusive scaling that lead to an implicit discretization of the diffusion limit, thus significantly relax to stability condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic-Preserving Numerical Schemes for the Semiconductor Boltzmann Equation Efficient in the High Field Regime

We present asymptotic-preserving numerical schemes for the semiconductor Boltzmann equation efficient in the high field regime. A major challenge in this regime is that there may be no explicit expression of the local equilibrium which is the main component of classical asymptotic-preserving schemes. Inspired by [14] and [13], our idea is to penalize the stiff collision term by a ‘classical’ BG...

متن کامل

Asymptotic Preserving Schemes for Semiconductor Boltzmann Equation in the Diffusive Regime

As is known, the numerical stiffness arising from the small mean free path is one of the main difficulties in the kinetic equations. In this paper, we derive both the split and the unsplit schemes for the linear semiconductor Boltzmann equation with a diffusive scaling. In the two schemes, the anisotropic collision operator is realized by the “BGK"-penalty method, which is proposed by Filbet an...

متن کامل

An Asymptotic-Preserving Stochastic Galerkin Method for the Semiconductor Boltzmann Equation with Random Inputs and Diffusive Scalings

In this paper, we develop a generalized polynomial chaos approach based stochastic Galerkin (gPC-SG) method for the linear semi-conductor Boltzmann equation with random inputs and diffusive scalings. The random inputs are due to uncertainties in the collision kernel or initial data. We study the regularity of the solution in the random space, and prove the spectral accuracy of the gPC-SG method...

متن کامل

Discretization of the Multiscale SemiconductorBoltzmann Equation by DiffusiveRelaxation Schemes

In this paper we derive diffusive relaxation schemes for the linear semiconductor Boltzmann equation that work in both the kinetic and diffusive regimes. Similar to our earlier approach for multiscale transport equations, we use the evenand oddparity formulation of the kinetic equation, and then reformulate it into the diffusive relaxation system (DRS). In order to handle the implicit anisotrop...

متن کامل

Asymptotic-Preserving Exponential Methods for the Quantum Boltzmann Equation with High-Order Accuracy

In this paper we develop high order asymptotic preserving methods for the spatially inhomogeneous quantum Boltzmann equation. We follow the work in Li and Pareschi [18] where asymptotic preserving exponential Runge-Kutta methods for the classical inhomogeneous Boltzmann equation were constructed. A major difficulty here is related to the non Gaussian steady states characterizing the quantum kin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013